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ABSTRACT

3
Our major objective is to obtain an approximation for
the average time spent waiting in queue by a customer in an

M/G/k queueing system~-call it W_ . This is done by means

Q e 28

of an approximation assumption presented}in~5ect§en»§> which
is shown to be asymptotically valid both in heavy and in
light traffic. ln—See;ien\g, the approximation assumption

is used to derive an approximation for W Numerical

50
comparison with tables given by Hillier—ts in the special
case of Erlang service times indicate that the approximation,
which depends on the service distribution only through its
first two moments, works remarkably well., In addition, as a
by-product of our analysis, we also obtain approximations
for the distribution of the number of busy servers and the
mean length and number of customers in a busy period. These
latter approximations depend on the service distribution only
through its mean.

In Section 4,“we~ehowmthép'£he approximation assumption

is valid and leads to the exact result in the case of a ' \///

limited capacity system where no queue is allowed to form.
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| APPROXIMATIONS IN MULTI-SERVER POISSON QUEUES
by

E Shirley A. Nozaki and Sheldon M. Ross

0. INTRODUCTION AND SUMMARY

In this paper we consider an M/G/k queueing system - that is a system in

Gt

——
-

which customers arrive in accordance with a Poisson process having rate 1\ ,

and are serviced by one of k servers, each of whom has service distribution

k- G . Upon arrival a customer will either enter service if at least one server
is free or else join the queue if all servers are busy. Our results will be
independent of the order of service of those waiting in queue as long as it is

? 3‘ supposed that a server will never remain idle if customers are waiting. To Sk

i R

facilitate the analysis, however, we will suppose a service discipline of

"first come first to enter service."

Our major objective is to obtain an approximation for the average time
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spent waiting in queue by a customer - call it W_. . This is done by means of

; Q

an approximation assumption presented in Section 2, which is shown to be

.

asymptotically valid both in heavy and in light traffic. In Section 3 the 113

approximation assumption is used to derive an approximation for W_ . Numerical ‘g

Q

comparison with tables given by Hillier-Lo in the special case of Erlang service (I
!

times indicate that the approximation, which depends on the service distribution

only through its first two moments, works remarkably well. In addition, as a

by-product of our analysis, we also obtain approximations for the distribution

" N G A ¢ e st e

i of the number of busy servers and the mean length and number of customers in a
3 | busy period. These latter approximations depend on the service distribution
9 only through its mean.

In Section 4 we show that the approximation assumption is valid and leads

! to the exact result in the case of a limited capacity system where no queue is

allowed to form.
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Future research plans are indicated in Section 5.

Throughout this paper we suppose that

A/xdc(x) <k

0

and

fxsz(x) 2o =

0
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I 1. BASIC DEFINITIONS AND FUNDAMENTAL EQUATION

P

: We shall need the following notation:

!

E ' Pi: the steady state probability that there are 1 people in the
? ? system

f S: a service time random variable, i.e., P{S < x} = G(x)

N WQ: the average amount of time that a customer spends waiting in queue
(does not include service time)

LQ: the (time) average number of customers waiting in queue

Vs the (time) average amount of work in the system, where the work
in the system at any time is defined to be the total (of all servers)
amount of service time necessary to empty the system of all those

presently either being served or waiting in queue.

We will make use of the following idea (previously exploited in such

A N

papers as {1], [2] and [5]) that if a (possibly fictitional) cost structure is

imposed, so that customers are forced to pay money (according to some rule)

4
!
{
fii to the system, then the following identity holds - namely

(time) average rate at which the system earns money
(1) = average arrival rate of customers X average amount

of money paid by a customer.

A heuristic proof of the above is that both sides of (1) times T 1{is

DS I VR e v

approximately equal to the total amount of money paid to the system by time

T , and the result follows by dividing by T and then letting T + = .T

1.A rigorous proof along these lines can easily be established in the models
we coneider since all have regeneration points. More general conditions
under which it is true are presented in [1].

k st 0T
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By choosing appropr.ate cost rules many useful formulas can be obtained
as special cases of (1). For instance by supposing that each customer pays

$1 per unit time while in service, Equation (1) yields that
(2) average number in service = )E[S] .

Similarly by supposing that each customer pays $1 per unit time while waiting

in queue, we obtain from (1) that

(3) L, = W

Also, 1f we suppose that each customer in the system pays $x per unit time

whenever its remaining service times is x , then (1) yields that

)
*
V=AESWQ+f(S—x)dx
0

. A[F(sw;) + E(SZ)/Z]

= AE[S]W, + AE[S%]/2

(4)

where W; is a random variable representing the (limiting) amount of time
that the n-th customer spends waiting in queue.

Equation (4) will be of particular use to us.

Another important fact which we shall use is that, since our arrival
stream of customers is a Poisson process, the probability structure of what
an arrival observes is identical to the steady state probability structure of

the system.+ Thus, for instance AE[S] will equal the average number of

busy servers that an arrival observes; V , will equal the average amount of

+Intuitively this 1s so since for a Poisson arrival process (a) the distribution
of the times at which arrivals occur 1is uniform, and (b) given that an arrival
occurs at time t , the conditional distribution for the remaining arrivals is
the same distribution as for the original Poisson process.

" T S b S i U i e S Rt gk i i £ Do el fiie dideke g LG do e dlaliidgtil ot i b Ll b b 2 (4
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i work in the system as seen by an arrival; and Pi , the probability that an

) arrival finds 1 people presently in the system.

; ‘ As a result of the above we may write Equation (1) as

- : Average rate at which system earns mouney

1 (5) = ) Z Pi X average amount paid by a customer finding
- i

4 " i people salready in the system wher he arrives.
»
T
|
-
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2, THE APPROXIMATION ASSUMPTION

5‘ Let Ge denote the equilibrium distribution of G . That is,

ﬁ : X

g 1 -6()

Ge(x) -f E[S) dy ,
0

also let

1 if x =y
§(x,y) = .
0 if x ¢y

1

; We shall make the following approximation assumption.

Approximation Assumption:

Given that a customer arrives to find 1 busy servers, 1 > 0 , then

at the time that he enters service, the remaining service times of the other

~—— e cew -
N

f
Q : i - 6(4,k) customers being served has a joint distribution that is approximately
i that of independent random variables each having distribution Ge a

Heuristic Remarks Concerning the A.A.:

1. First we note that the A.A. is asymptotically true either in heavy

TR
-

traffic (that is, as AE[S] - k) or in light traffic (that is, as
AE[S] + 0). This is so in heavy traffic since the great majority

of arrivals will encounter a large queue and as a result the k

N o Y

departure processes (one for each server) they observe will be
approximately independent delayed renewal processes. Hence, consider-
ing those customers served by server i , it follows that when they

4 enter service they would have been observing k - 1 independent
delayed renewal processes for a large time, and the A.A. follows

since the limiting distribution of excess in a renewal process is

just Ge .

. . a . o R r Py T g b faldahy i s Lot
o e i 0 ahesaded Mo hbs e ki i i PRI Sl e i 2 i A ohg it b T




In extremely light traffic the great majority of arrivals will

find either 0 or 1 busy servers. Now since Poisson arrivals see the
system as it 1s (averaged over all time) it follows that arrivals
finding 1 server busy would encounter the same additional service

time (for the busy server) as would random (and uniform) time sampling
? | of the excess of a renewal process. Hence, the A.A. follows in light

traffic from the renewal process (excess) result.

2. In fact the same reasoning given above for light traffic shows that

if we isolate attention upon a particular server, then whenever
customers arrive to find this server busy, the remaining service ;
% time will have distribution Ge . Now it should be noted that this

is not the same as saying (as the A.A. does) that the remaining

service time of this server will have distribution Ge at the moment

when a customer is about to enter service (as opposed to when he

arrtves). However we might hope that it should be close.

3., Additional heuristics for the A.A. follows from the fact that it is

known to be (exactly) true when no queue is allowed (see Section 4).




3. THE APPROXIMATION

For any arbitrary arrival we have the following identity:

work in the system at the time of his arrival

= k x time he spends waiting in queue + R

where

R = sum of the remaining service times of all those being

served at the time when the arrival enters service.

Taking expectations ylelds, since a Poisson arrival sees the system as

it is in steady state, that

V= kWQ + E[R] .

To obtain E[R] we condition on B , the number of servers that are busy when

the customer arrives.

E(R] = E[E(R/B")

E(s?]

= E[B - 6(B,k)] 7E (5]

where the last equation follows from the A.A., and the fact that 4.xdGe(x) =

E[SZI/ZE[S] . Since E[B] = XE[S] from Equation (2), we obtain that

2 2
< E[s)E[SY) oo
E(R] =) 2 ~ 2E[5) P{B k}

==AEISZ| _ EISZ| B

2 2E[S] "k

where

L0 ST R T
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Hence,

2 2
V= kg + ) El%—l-— E[s ]y

2E[S] & °

However, from Equation (4) we know that
ElSzl
V = XE[S]WQ + A 2

implying that

E[SZ]§k
(6) Q™ ZE[ST(k = AE[S])

Thus we need P To obtain the probability distribution of the number of busy

e
servers we impose the following fictitional cost structure - namely that the 1
oldest customers in the system pay $1 per unit time, 1 = 1,2, ..., k , where

the age of a customer is measured from the moment it enters the system. Hence,

;,S;, e S:—l denote k - 1 independent random variables each

having distribution Ge we obtain from Equation (5) that

letting S

B |6 2B et & SR, (L - Res el R ) 3
. e .e e+ ‘:
= A(P0 + oo + Pi-l)E[S] + APiE[(S = min(Sl,Sz, 0 ol Si)) 4
' 4
e e N
+ AP1+1E (S - 2nd smallest of (Sl, noop Si+1))
+

7 . g

+

+
e e
APk_ZE[KS - (k -1 - 1)th smallest of (Sl, - Sk_2)> ]

+

+
e e
A (1l - P0 - - Pk_z)E[KS - (k - 1)th smallest of (Sl, Fte s Sk-l)) ]
i=1, ..., k-1

P, + 2P

1 g+ e+ (k- 1P +k(l~Py= s =P _ )= AE[S]

Loveids o
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m x 1f x>0
where x = . To understand the above equations suppose first
0 {if x <0

that 1 < k . Now as only the 1 oldest pay it follows that when Jj customers
are present the system earns at a rate j when j < 1 and at a rate 1 when

j > 1 . Hence the left side of Equation (7) represents the average rate at
which the system earns. On the other hand an arrival finding fewer than 1
customers already in the system will immediately go into service and will pay

a total amount equal to his service time; while an arrival finding j present,
k -1>3>1 will also go immediately into service but will only begin paying

when j -1 41 of the j others in service leave. Thus in this latter case,

under the A.A., the arrival would expect to pay a total of E[(S -(J+1-1)th
+

smallest of (Se s¢ seog Se)) . Finally 1f the arrival found more than k - 2

busy servers then he will begin paying after k - 1 of those customers in service
when he enters service leave the system. This explains the first k - 1 of the
set of Equation (7). The last equation (when i = k) easily follows since in

this case each customer will pay a total equal to his time in service.

To simplify the set of Equation (7) we will need the following lemma.

Lemma 1:

1f S,Se, 000g S: are independent random variables such that S has

distribution G and the others Ge , then

E[(S - jth smallest of (se

Proof:

Using the identity

(x - y)+ = x - min(x,y)




~—— . e - .

adl LA G b i 3
- s -~ oo

11

we have that

+
E[(S - jth smallest of ST, ..., s:)]

= E[S] - E[min(s, jth smallest of S;, X S:)] .

Now,
E[min(s, jth smallest of S;. I 1 S:)]
-/P{S > a}P{jch smallest of (Si, orFomy S:) > a}da
0

[ j-l L
'f(l -c@) T (}) @ enta - c @) e
0

£=0
42T, e 1 . oy (by the substitution
- Es) 1 (i)_ofy (-9 ey y - G
dy = i——[———>—l = g%’ ) da)
ol
TORNHE
- Es) —+

which proves the lemma.l

Hence, using Lemma 1, the Equation (7) become

P1+2P2+---+(i-1)P1_1+i(1-P0—---—Pi_l)
= \(P, + *++ + P, )E[S] + )P 1 E[S] + ¢+ + AP ——i—-E[S]
0 i-1 11+1 k-2 k -1
(8)
1
+)\(1-P0-°---Pk_2)EE[S]. i=1, ..., k-1
P. + 2P

A 2+---+(k-1)Pk_l+k(1-P0—----Pk_l)

= AE[S]

i e o br i A EEL. L e Ll L L a i A

~a

§ e
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Now, as the above equations for the P i=0,1, ..., k -1, depend

i 3
only on G through E(S] and as the equations are exactly true when G 1is
exponential (since the A.A. 1s exact when G 1is exponential) it follows (since

it can be shown that the set of equations has at most one solution) that the

solution of (8) is identical to the well known solution in the case M/M/k.

That is,
LS n QE(s)* -
Py * nZO QE[SD ™ /nl + Tk - xl-:[s])]
and
. QElsh?
Pig—-—F—PO’ i=1, ..., k-1
Hence,
o _QE(s)" s
k - n
) (AE[S]) (AE(S])
(k = 1)!(k - XE[S]) n’-z'O nt T k- (k- AE[S])]

and our approximation for WQ is thus given by

Q /%1 (e(sp® QE(sD®
2(k - 1)1 (k - AE[S)) nZO nt T k= 1) 1(k = XE[S)

In the special case of two servers, k = 2 , we have that

5 OE[s)?
2 2+ )E[S]

when k = 2

and (9) reduces to

'a
g
i
]
[
f
|
[
14
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. A\2E(s%)E(s]

W

Q" 2(Z < 2E[S (2 + *E[S]) wheat ke =2

Numerical tables for LQ have been published by Hillier and Lo in the
special case M/Er/k, where Er represents an Erlang distribution with r
phases. That 1s, a service time has the same distribution as the sum of r
independent and identically distributed exponential random variables. The

following tables compares our approximate formula for L (namely W

Q Q

with the Hillier-Lo tables.
It is also interesting to see how our approximation for the probability
that all servers are busy (call it P{all busy}) compares with the actual

values in the special case M/Er/k. Again referring to the Hillier-Lo tables

we have Table 3.

Remarks:

1. It is interesting to note that in all cases the approximation for WQ
is slightly less than the exact value in the case of Erlang service
times. While the reason for this is by no means apparent and further

study is clearly indicated the authors feel that it may be relevant

that the Erlang is an increasing failure rate distribution.

2. The approximation for Po also leads to approximations for E[B]
aid E[C] , the expectations of the length of and the number of
customers served in a busy period. This follows since from the theory

of alternating renewal processes we have that

L 1N
0~ I/x + E[B]

or

o AR
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Also, letting xi denote the time between the i-th and (1 + 1)st

arrival then

c
E| } X | = E[B] + 1/x .
i=1

However, by Wald's equation
C
el I x| =ECI/A
i=1

and so

E(C] = AE[B] +1

= 1/P0 .

-“*"’"—d!‘“\
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4. NO QUEUE ALLOWED - ERLANG'S LOSS FORMULA

In this section we suppose that arriving customers that find all servers
busy are lost to the system. In this case it is known (see [6)) that the A.A.
is exact. The limiting probabilities can be obtained by again supposing
that the 1 oldest customers pay $1 per unit time while in the system.

From the fundamental Equation (5) and Lemma 1 we obtain the equation

Pl + 2P2 + oee 4+ (1 - 1)Pi_1 +1(1 - Po - 0o = Pi-l)

i
1i1+1

1
E[S] + i & AP o= E[S] + AP

=
1-1 k

= A(Po + cee + Pi_l)E[S] + AP E[(S] ,

i-l.ooo.k-l

B, + 2, + sve & kE

1 = A(1 - Pk)E[S] .

k

The above equations, along with the equation,

can now be solved to yield the well known result known as Erlang's loss formula -

namely

1
k(kE[S]) /! 1= Oply s - ke ¢

T QE[S)™/n!

n=0

ey
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In future work the authors are planning to employ the approach of the

present paper to obtain an approximation for WQ in such extensions as

3 ! (1) finite capacity models
(11) batch arrival models

' (111) models in which each server has a different service

distribution.

It is felt that such models have great applicability in the real world.
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